1. Metric Learning for Prototype-based classification
نویسندگان
چکیده
In this chapter, one of the most popular and intuitive prototype-based classification algorithms, learning vector quantization (LVQ), is revisited, and recent extensions towards automatic metric adaptation are introduced. Metric adaptation schemes extend LVQ in two aspects: on the one hand a greater flexibility is achieved since the metric which is essential for the classification is adapted according to the given classification task at hand. On the other hand a better interpretability of the results is gained since the metric parameters reveal the relevance of single dimensions as well as correlations which are important for the classification. Thereby, the flexibility of the metric can be scaled from a simple diagonal term to full matrices attached locally to the single prototypes. These choices result in a more complex form of the classification boundaries of the models, whereby the excellent inherent generalization ability of the classifier is maintained, as can be shown by means of statistical learning theory.
منابع مشابه
Metric learning for incorporating privileged information in prototype-based models
Prototype-based classification models, and particularly Learning Vector Quantization (LVQ) frameworks with adaptive metrics, are powerful supervised classification techniques with good generalization behaviour. This thesis proposes three advanced learning methodologies, in the context of LVQ, aiming at better classification performance under various classification settings. The first contributi...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملPrototype Based Classification Using Information Theoretic Learning
In this article we extend the (recently published) unsupervised information theoretic vector quantization approach based on the Cauchy–Schwarz-divergence for matching data and prototype densities to supervised learning and classification. In particular, first we generalize the unsupervised method to more general metrics instead of the Euclidean, as it was used in the original algorithm. Thereaf...
متن کاملEfficient Adaptation of Structure Metrics in Prototype-Based Classification
More complex data formats and dedicated structure metrics have spurred the development of intuitive machine learning techniques which directly deal with dissimilarity data, such as relational learning vector quantization (RLVQ). The adjustment of metric parameters like relevance weights for basic structural elements constitutes a crucial issue therein, and first methods to automatically learn m...
متن کاملRegularized margin-based conditional log-likelihood loss for prototype learning
The classification performance of nearest prototype classifiers largely relies on the prototype learning algorithm. The minimum classification error (MCE) method and the soft nearest prototype classifier (SNPC) method are two important algorithms using misclassification loss. This paper proposes a new prototype learning algorithm based on the conditional log-likelihood loss (CLL), which is base...
متن کامل